Step 1: upload data to katiML
import os
os.environ['DIOPTRA_API_KEY'] = 'my_api_key'
from dioptra.lake.utils import upload_to_lake, wait_for_upload
upload_id = upload_to_lake(records=[{
'image_metadata': {
'uri': 'https://dioptra-demo.s3.us-east-2.amazonaws.com/stanford-dogs-dataset/n02085620-Chihuahua/n02085620_8578.jpg'
},
'groundtruth': {
'task_type': 'CLASSIFICATION',
'class_name': 'chihuahua'
},
'tags': {
'source': 'stanford_dogs'
}}])
wait_for_upload(upload_id)
Step 2: check your data in the UI
Step 3: query katiML
Query like a SQL database, get it as a DataFrame
import os
os.environ['DIOPTRA_API_KEY'] = 'my_api_key'
from dioptra.lake.utils import select_datapoints
select_datapoints(
filters=[{
'left': 'tags.value',
'op': '=',
'right': 'stanford_dogs'}])