Dioptra Documentation
  • What is KatiML ?
  • Overview
    • 🏃Getting Started
    • 🌊KatiML
      • Quick start
      • Ingestion basics
      • Ingestion SDK
      • Query basics
      • Query SDK
      • Dataset basics
      • Dataset SDK
      • Supported fields
      • Matching local data with Kati ML IDs
      • Managing Datapoints with Tags
      • Configuring Object Stores (optional)
    • 🧠Active Learning
      • 📖Miners basics
      • ⛏️Miners SDK
      • 🚗[Experimental] Mining on the edge
    • 🤖PyTorch and Tensorflow integrations
      • Tensorflow
      • PyTorch
  • 😬Enough docs, show me some code !
  • 📑Case studies
  • Definitions
Powered by GitBook
On this page
  • Step 1: upload data to katiML
  • Step 2: check your data in the UI
  • Step 3: query katiML

Was this helpful?

  1. Overview
  2. KatiML

Quick start

Step 1: upload data to katiML

import os
os.environ['DIOPTRA_API_KEY'] = 'my_api_key'

from dioptra.lake.utils import upload_to_lake, wait_for_upload

upload_id = upload_to_lake(records=[{
    'image_metadata': {
        'uri': 'https://dioptra-demo.s3.us-east-2.amazonaws.com/stanford-dogs-dataset/n02085620-Chihuahua/n02085620_8578.jpg'
    },
    'groundtruth': {
        'task_type': 'CLASSIFICATION',
        'class_name': 'chihuahua'
    },
    'tags': {
        'source': 'stanford_dogs'
    }}])

wait_for_upload(upload_id)

Step 2: check your data in the UI

Step 3: query katiML

Query like a SQL database, get it as a DataFrame

import os
os.environ['DIOPTRA_API_KEY'] = 'my_api_key'

from dioptra.lake.utils import select_datapoints

select_datapoints(
    filters=[{
        'left': 'tags.value',
        'op': '=',
        'right': 'stanford_dogs'}])

PreviousKatiMLNextIngestion basics

Last updated 1 year ago

Was this helpful?

🌊