Supported fields
Datapoints
Datapoints are the core element of katiML. Each datapoint describes a unique piece of data like an image, a video or a document. Below are the supported fields per data type.
"type": "IMAGE",
"metadata": {
"width": "INT",
"height": "INT",
"uri": "STRING", // a uri to the image (supported aws s3, gcp, azure)
"normalized_roi": { // crop of the image the model focuses on
"top": "INTEGER",
"left": "INTEGER",
"height": "INTEGER",
"width": "INTEGER",
"STRING": "STRING" // any key value pair you'd like
},
"brightness": "FLOAT",
"sharpness": "FLOAT",
"contrast": "FLOAT"
}
On top of this, generic fields can be passed like tags, timestamp or GPS coordinates
{
"gps_coordinates": {
"lat": "FLOAT",
"long": "FLOAT"
},
"timestamp": "TIMESTAMP", // default: ingestion time
"tags": {
"STRING": "STRING" // key-value pairs for arbitrary metadata
}
}
Ground Truths
In katiML, ground truths are attached to datapoints. Their format depends on task type.
"groundtruths": [{
"task_type": "CLASSIFICATION",
"class_name": "STRING"
}]
Predictions
In katiML, predictions are attached to datapoints. Their format depends on task type.
"predictions": [{
"task_type": "CLASSIFICATION",
"model_name": "STRING" // name of the model
"logits": ["FLOAT"] // 1d or 2d array of logits with matching indexes to the class_names. If 2d then this is mc dropout
"class_names": ["STRING"] // Array of class names
"embeddings": {
"STRING": ["FLOAT"] // key value pair: key is the layer name and value is a 1d, 2d or 3d array with the embeddings values format: 3d format CxHxW
},
"metrics": {
"STRING": "FLOAT",
...
}
}]
Last updated
Was this helpful?