Supported fields

Datapoints

Datapoints are the core element of katiML. Each datapoint describes a unique piece of data like an image, a video or a document. Below are the supported fields per data type.

"type": "IMAGE",
"metadata": {
    "width": "INT", 
    "height": "INT",
    "uri": "STRING", // a uri to the image (supported aws s3, gcp, azure)
    "normalized_roi": { // crop of the image the model focuses on
        "top": "INTEGER",
        "left": "INTEGER",
        "height": "INTEGER",
        "width": "INTEGER",
        "STRING": "STRING" // any key value pair you'd like
    },
    "brightness": "FLOAT",
    "sharpness": "FLOAT",
    "contrast": "FLOAT"
}

On top of this, generic fields can be passed like tags, timestamp or GPS coordinates

{
    "gps_coordinates": {
        "lat": "FLOAT",
        "long": "FLOAT"
    },
    "timestamp": "TIMESTAMP", // default: ingestion time
    "tags": {
        "STRING": "STRING" //  key-value pairs for arbitrary metadata
    }
}

Ground Truths

In katiML, ground truths are attached to datapoints. Their format depends on task type.

"groundtruths": [{
    "task_type": "CLASSIFICATION",
    "class_name": "STRING"
}]

Predictions

In katiML, predictions are attached to datapoints. Their format depends on task type.

"predictions": [{
    "task_type": "CLASSIFICATION",
    "model_name": "STRING" // name of the model
    "logits": ["FLOAT"] // 1d or 2d array of logits with matching indexes to the class_names. If 2d then this is mc dropout 
    "class_names": ["STRING"] // Array of class names
    "embeddings": {
        "STRING": ["FLOAT"] // key value pair: key is the layer name and value is a 1d, 2d or 3d array with the embeddings values format: 3d format CxHxW
    },
    "metrics": {
        "STRING": "FLOAT",
        ...
    }
}]

Last updated

Was this helpful?